ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-21-30257

Approved for public release; distribution is unlimited.

Title: mystic: software for autonomous discovery and design under uncertainty
Author(s): McKerns, Michael
Intended for: CAMERA Workshop on Autonomous Discovery in Science and Engineering,

2021-04-20/2021-04-22 (Berkeley, California, United States)

Issued: 2021-11-04 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher

recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its

technical correctness.

mystic: software for autonomous discovery,
design, and control under uncertainty

Mike McKerns

mystic: model validation and optimal design

« original funding: neutron instrument tuning & experiment design
« 20+ years of development with over 65$M of funding

E
Sl
ISQ]V 0\
%, [(B/ NATIONAL LABORATORY
u \
A\q\\.‘ll\" ED [/

DANSE (NSF): non-convex optimization and experiment design
PSAAP (NNSA): parallel/distributed computing and UQ/V&V
ExMatEx (ASC): scalability, reliability, and persistence
additional funding from DARPA, AFOSR, DTRA, LANL, BNL, ...
R&D/prod: JPMorgan, Barclays, Morgan-Stanley, LMCO, Roche, UTRC, ...

Iy United FrUA P = 2
J.PMorgan - A 2N
Technologies VAVa.eé‘"

National Nuclear Security Administration

Los Alamos

LOCKHEED MARTIN
foundation

\ 'q
\ Stony Brook BROOKHIAEN @

q\ University NATIONAL LABORATORY

learn model robustness/accuracy under uncertainty

Y e e
"‘ e 1)

k-

= 3P
‘aa:’.{sa‘
‘Q.L‘{ P

IS&T Theme #3: Machine Learning and Artificial Intelligence
“Development of reliable and trustworthy algorithms, e e e Neeo ron
methods and models to enable machine learning and Sciontific Macking Leaning
artificial intelligence technologies for science and security.” e

Priorities: Specific areas of interest include:

“Integration into and optimization of experimental,
computational, and observational workflows, including
methods that combine heterogeneous data, or exploit small
datasets.”

ENERGY

: : : Foundational research themes from BRN report
This work will tackle the following themes: e b

: . . . Domain-aware physical principles & symmetries
* Incorporating physics domain knowledge into ML SciML severaging & respecting S
. . » scientific domain knowledge structure-exploiting modeis
through physics-informed kernels and regularizers. Foundations e . ;
» Use UQ-driven active learning to produce optimally :
Machine Int retable model selection
robust surrogates. Learning : m:'lz cane | oot sere o nonam s
. . . . expiamna understandable resul uncertainty quamm'm + ML
» Demonstrating reproducibility and well-posedness in ML f°;:i‘:‘r’;’“ﬁ’;i°:d :

surrogates. Computing
Research Robust probabilistic modeling in ML

quantifying well-posedness
reliable hyperparameter estimation

stable, well-posed &
reliable formulations

solve PDEs w/ digital transformation (automation)

Au = f
Au = f
A. L. Cauchy |
(1789-1857) _ .

S. D. Poisson
(1781-1840)

ihs 2l L) . ,
g R X G TN VAN

can we automate model design and validation?

Where are we at in finding statistical estimators?

=
Find the =

best estimator
or model

designing an estimator is + (sample) data

currently very laborious '

f(data)

human intellect into design of the computation

Can we turn model design into a computation?

best estimator

or model _

+ (sample) data

& H(da!a)

model certification/validation under uncertainty

The UQ challenge in the certification context
(Performance of a weapon system)

You want to certify that

P [failure} < treshold

Problem

e You cannot test it.

e You don’t know all possible causes of a failure
e You don’t know P

BUT

e You can simulate

e You have 20 samples from the old system

state the problem in terms of what we know

You want to certify that

PIG(X)>al <e

Problem

e You don’t know G
and

e You don’t know P

You only know

(G,P)e A

f: X —

A C {(f,u) L e p(XR;’}

compute bounds determined by what we know

Compute Worst and best case

optimal bounds P|G(X) > a]
given available information.

UA) = sup plf(X)>a
(f,n)eA
L(A) = f
A= inl HIX)2d]

L(A) <PG(X) > a] <U(A)

U(A) < e: Safe even in worst case.
e < L(A): Unsafe even in best case.

L(A) < e <U(A): Cannot decide.
Unsafe due to lack of information

constraining information determines bounds

You are given one pound of playdoh,
how much mass can you put above a
while keeping the seesaw balanced around m?

m
1 —0p p
0 m: a 1

{maXp Answer ﬁ
(]

subject to ap < m

generalizes to bounds on unknown distribution

What is the least upper bound on P|X > a]
if all that you know is that P is an unknown
distribution on |0, 1] having mean less than m

0 A a 1

m™m

A= {pe M([0,1]) | E,[X] < mj

Markov’s inequality

Answer Sup M[X Z a} — E
ne A a

constraining information determines the bounds

Each piece of information is a constraint
on an optimization problem.

Optimization concepts (binding, active) transfer to
UQ concepts

Binding but non

f active constraint
Non binding | 4
constraint \ _ Active constraint
A Extremizer/
Worst case scenario

7

bounds on expected error as an information game

Player I Player 11

chooses \%%\ /W/ chooses 6
uwe A

Pure strategy solutlon for Player I
Optimal bound on the statistical error

7
max & (u, 0)

Optimal statistical estimators

mem max E(w,0)

Not ddl t: 0 0) =
ot a saddle poin mammeajcg(u)#medj(momg(u,) 0

solving for bounds on statistical quantities

« Arigorous notion of optimality can be derived from the worst case bounds on
expected distances of model predictions @9{ «) from new data d to be
sampled from the unknown data generating distribution D(f, #), which
depends on the unknown probability measure ¢ and response functionf
drawn from the admissible set 4 of potential solutions.

« The goal is to find a function of the data & (d) that minimizes the worst case
statistical error between the model predictions and & (d). If we select an
arbitrary (not necessarily optimal) function of the data &*(d), then statistical
error is defined by maximizing the distance between @(f) and &*(d) over
the space defined by all (£ #) € 4. The most robust model is the model
that minimizes the worst case statistical error over all potential functions
of samplings of the data from D(f «) -- (Owhadi et al, 2015).

optimal model

min max EdN]]]) | |9 (d) o ¢(f, u)) |2 optimal bounds on the statistiCjI error for a given model
0 (fu)esd ol | max Egopirp[107(d)—P(f,1))[]

€l
optimal bounds on model uncertainty for a given model (f’u)

max P, 0*(d)— D(f, >a
RaX Ean(fp) 16%(d) — @(f,u1))| > a

optimal bounds on likelihood of failure for a given model

max P, 0*(d) — D(f, >a|l <&
Joax B p(rw |107(d) (f,1))| > a]

statistical kernels transform to probability space

optimization in product measure space (not
input parameter space)

W' > =2 >=) wlz; >
7

by transforming to

v >
o) e} 0
w1,T W2, T2
o) o)
L |
A

mean-constrained optimization balances
weights and positions of Dirac masses around a
critical point

e :‘:ﬂ’

product measure space, we

maximize the quantity of interest by using
optimizers to search over a discretized
probability distribution

In measure space, extremum-seeking algorithms
seek rare events and discover worst-case bounds,
hence generally outperform Monte Carlo sampling.

1.0 <

Monte Carlo ~o oSS~

meanonz Soo SN SN

0.2' ~ SOONS
—— meanoné SN

~
—— meanoné,varoné S
—— meanon6, meanonz

0.0 —

100 102 104 106 108 110 112 114

P(z > &) at § ~ U(0,0.1)

UQ calculation of bounds on likelihood of
failure vs percent distance the next
shockfront forms beyond the average of
1M shocks. Notice how UQ bounds
respond to each new piece of information
while Monte Carlo bounds do not
(McKerns et al, 2019).

example: mean constraints in measure space

def constraints(rv): (g =model : p € [1b,ub] — R,
¢ = product_measure().load(rv, npts) M=:§:iﬂﬂh@,
impose norm on each discrete measure A= 4 (9,1) E:im1W==1,
for measure in c: E,lg] = zmean,
if not almostEqual (float(measure.mass), 1.0): \ p = d.mean J

measure.normalize()
impose expectation value and other constraints on product measure
E = float(c.expect(model))
if E > (target[0] + error[0]) or E < (target[0] - error[0]):
c.set_expect ((target [0] ,error[0]), model, (x_lb,x_ub), _constraints)
return c.flatten() # extract parameter vector of weights and positions

def _constraints(c):
E = float(c[0] .mean)
if E > (target[1] + error[1]) or E < (target[l] - error[1]):
c[0] .mean = target[1]
return c

Placing information constraints in kernels
(e.g. not built into the model) enables testing
how new measurements and information (i.e.
adding a new constraint on the inputs or outputs)
alters the bounds on all possible outcomes.

def objective(rv):
¢ = product_measure().load(rv, npts)
return MINMAX * c.pof(failure)

We can perform design of experiments to discover an information set
that can certify the system (to pass a statistical test within a given tolerance)

example: constraints from data & approx models

generate primary constraints function
def constraints(rv):

c = scenario()

c.load(rv, npts)

data point
& functional

ensure norm(wi) = 1.0 in each discrete measure ¢
constraints

norm = 1.0 V> = U >= wlz >
for 1 in range(len(c)): ,

K3
w = cl[i]l.weights ‘///\\\///\\\\
wl-1]1 = norm - sum(w[:-11) A a a
I_#I
impose mean on the values of the product measure

from mystic.math.discrete import mean_y_norm_wts_constraintsFactory as factory
constrain = factory((target[9],error[0]), npts)

c[il.weights = w

check mean value, and if necessary use constrain to set mean value
y = float(mean(c.values, c.weights))
if not (y >= float(target[0] - error[0])):

c.update(constrain(c.flatten(all=True)))

then test if valid... then impose model validity on product measure
if not c.valid_wrt_model(model, ytol=target[2], xtol=target[3], \
imax=target[4]):
c.set_valid(model, cutoff=target[2], bounds=bounds, tol=error[2], \

constraints=constrain, xtol=target[3], \
maxiter=error[3], imax=error[4])

extract weights and positions and values

return c.flatten(all=True)

failure of shielding under particle radiation

» simulate He-ion into Fe shielding

Stopping Distance

— use Monte Carlo sampling to calculate
average penetration depth into shieling
1el8 Energy of Particle E]
e Dballistic @ He_in_Fe_at_750000.0 E 1072 §
8 1&e '-‘ % e electronic @ He_in_Fe_at_750000.0 g
4 e total @ He_in_Fe_at_750000.0 ,E_, 10-3 4
% ° 1074 4
g 1076 T T T T T T T
£l 1073 102 10-? 10° 101 102 10°
Energy of the particle [MeV]
° : : : : , . . 1.04 — E0,
0.00000 0.00002 0.00004 géonoe(i(:jtighogggfh ?C.(r:)]OlO 0.00012 0.00014 —— Eo,, EO,
o —— EO,, EOq, p /
. . . 81 — EOy, EO,, Cy, Co
« calculate likelihood of failure g | —eacds
. E P sample EO,C/
— failure if particle breaches shielding g] smelero
5 /
. . 2 04 { F;
+want a design measure (risk) L
TN D T T S |
— expected penetrahon depth 02 7:
:) I — =
— bound on expected penetration depth 755 J

— bound on worst-case penetration ... L.

likelihood of non-elastic failure in tower joint

e Problem: Can we certify the seismic safety of a
given structure subjected to earthquake ground
motion, where only the maximum magnitude and
focal distance of the earthquake are known?

e We construct all possible earthquake scenarios

— Random inputs of high-dimensionality (~600)
with a large number of constraints (~1200)

— Inputs are coefficients c; in the transfer
function, and amplitudes X; and durations s; in
the earthquake source function

q
‘ q
s =3 Xesi(t) 00 =Y3)
. i=1
i=1
e Ground acceleration is a convolution of the source
and transfer functions, while dynamics of joint
deflection are governed by
dr

t
va(t) = —/ eCawalt=T) ginfwa (t — T)](qz;ﬂ[Tiio(T)) —
0

fio(t) := (v % 5) (1)

W

typical scenarios for resulting

ground acceleration
8

probability of failure as
a function of maximum
groundj;? leration

tl? . . -
oo AT when axial

[6 U e strain occurs
‘fa near truss
s | resonance
’ ‘ 1 modes, failure

1l can occur

a truss structure

Failure occurs when axial strain in
any truss member exceeds the
member yield strain

[Livloo < S

We determine the probability of
non-elastic failure with respect to
the unknown earthquake ground
motion the structure will experience

can we better utilize physical information?

« kernel transforms often are used to incorporate nonlinear

information into linear models —

y(X, W) = wp +wiy + ...+ wpzrp

. A kernel transform can be seen to
R j=0 transform the model f'(x) = f(c(x)) or
L to transform the input coordinates

f(x) = f(c(x))

° . T\ Ater polynomial transform
_ | | :
y(X, W) E wj;(x) -

P R
(—2—mVZ+V)w=/h§

ROQC

Qo Constraining
Microstructures : :
Valid under Data information from]
Ty measurements Can we build k_ernel_s that ensure
and theory are models are trained in a space that
used to guarantees they are valid with
construct a respect to all known physical and
kernel. Learning o .
is then statistical constraints?

performed in the

space of v_alid If so, can we think of hierarchical learning in
solutions terms of hierarchical kernel transformations?

example: design optimization w/ soft constraints

"Pressure Vessel Design"

from vessel import objective, bounds, xs, ys

from mystic.constraints import as_constraint
from mystic.penalty import quadratic_inequality

def penaltyl(x): # <= 0.0
return =x[0] + 0.0193%x[2]

def penalty2(x): # <= 0.0
return =x[1] + 0.00954%x[2]

def penalty3(x): # <= 0.0
from math import pi

return —pikx[21x*x2%xx[3] — (4/3.)%pikx[2]1%*3 + 1296000.0

def penalty4(x): # <= 0.0
return x[3] - 240.0

@quadratic_inequality(penaltyl,
Pguadratic_inequality(penalty?2,
@quadratic_inequality(penalty3,
@quadratic_inequality(penalty4,
def penalty(x):

return 0.0

solver = as_constraint(penalty)

k=1e12)
k=1e12)
k=1e12)
k=1e12)

if

__name__ == '__main__"':

from mystic.solvers import diffev2
from mystic.math import almostEqual

result = diffev2(objective, x©@=bounds,
bounds=bounds, !
penalty=penalty, \
npop=40, gtol=500)

\

example: global MIP w/ symbolic constraints

def objective(x): Optimization terminated successfully.
return 0.0 Current function value: 0.000000
Iterations: 88
bounds = [(0,10)1*7 Function evaluations: 3560
constraints [6. 0. 8. 4. 9. 3. 09.]
equations = """

98527*x0 + 34588*x1 + 5872%*x2 + 59422*x4 + 65159*x6 - 1547604 - 30704*x3 - 29649*x5 == 0.0
98957*x1 + 83634*x2 + 69966*x3 + 62038*x4 + 37164*x5 + 85413*x6 - 1823553 - 93989*x0 == 0.0

900032 + 10949*x0 + 77761*x1 + 67052*x4 - 80197*x2 - 61944*x3 - 92964*x5 - 44550*x6 == 0.0
73947*x0 + 84391*x2 + 81310*x4 - 1164380 - 96253*x1 - 44247*x3 - 70582*x5 - 33054*x6 == 0.0
13057*x2 + 42253*x3 + 77527*x4 + 96552*x6 - 1185471 - 60152*x0 - 21103*x1 - 97932*x5 == 0.0
1394152 + 66920*%x0 + 55679*%x3 - 64234*x]1 - 65337*x2 - 45581*x4 - 67707*x5 - 98038*x6 == 0.0
68550*x0 + 27886*x1 + 31716*x2 + 73597*x3 + 38835*x6 - 279091 - 88963*x4 - 76391*x5 == 0.0
76132*x1 + 71860*x2 + 22770*x3 + 68211*x4 + 78587*x5 - 480923 - 48224*x0 - 82817*x6 == 0.0
519878 + 94198*x1 + 87234*x2 + 37498%*x3 - 71583*x0 - 25728*x4 - 25495*x5 - 70023*x6 == 0.0
361921 + 78693*x0 + 38592*x4 + 38478*x5 - 94129*x1 - 43188*x2 - 82528*x3 - 69025*x6 == 0.0

nmnn

from mystic.symbolic import generate penalty, generate conditions
pf = generate penalty(generate conditions(equations))

from numpy import round as npround

if name == ' main_ ':

from mystic.solvers import diffev2

result = diffev2(objective, x0=bounds, bounds=bounds, penalty=pf,
constraints=npround, npop=40, gtol=50, disp=True, full output=True)

physics-informed kernels increase model validity

data & functional constraints

* box (range) constraints

* nonlinear (functional) constraints

e uniqueness and set-membership constraints
« probabilistic and statistical constraints 1 2’ >
« constraints imposing sampling statistics

* inputs from sampling distributions

kernels that utilize physics and
statistical information can lead
heo to validated models that
‘l - produce better predictions

|

. .) EA o(f) = f(c(E))
« constraints from legacy data (points and data sets) FL W o |
| /‘f"‘":‘"q‘ .
« constraints from models and distance metrics ﬂ | lm experiments
« constraints on (product) measures fk—
we can think o . .
« support vector (weight, independence) collapse enels as operators QN AR O
on coordinate space w :

>>> from mystic.constraints import unique, discrete, integers, with_mean, and_, not_

>>> from mystic.math.measures import mean

>>> ¢ = and_(unique, discrete(range(10,100,3))(lambda x: x), with_mean(50)(lambda x:x))
>>> ¢([6,33,14,33,511)

[89.0, 44.0, 50.0, 32.0, 35.0]

>>> mean(_)

50.0

>>> ¢ = and_(integers()(lambda x:x), not_(lambda x:[@]xlen(x)), with_mean(@)(lambda x:x))
>>> ¢([6,3,-1,-3,51)

[41 1, _31 -5, 3] . . oy o .

>>> mean(_) instead of training purely on data, models are fit in a space defined by

0.0 physical and statistical constraints -- thus are guaranteed to be valid

i

example: information-constrained learning

>>> import numpy as np
>>> from sklearn import preprocessing as pre
>>> from sklearn import linear_model as lin
>>> from mystic.symbolic import generate_constraint, generate_solvers, simplify
>>> from mystic.constraints import vectorize
>>>
>>> # define a model
>>> a,b,c,d = 0.661, -1.234, 2.983, -16.5571
>>> def model(x):

x0,x1,x2,x3 = Xx

return axx3%*3 + bxx2%%2 + ckx1 + d*x0

>>> # generate some sparse data
>>> xtrain = np.random.uniform(0,100, size=(10,4))
>>> target = model(xtrain.T).T
>>> xtest = np.random.uniform(@,100, size=(10,4))
>>> test = model(xtest.T).T
>>>
>>> # define some model constraints
>>> equations = """
3%b + ¢ > -0.75
4.5%b - d > 11.0
>>> var = list('abcd')
>>> equations = simplify(equations, variables=var)
>>> cf = generate_constraint(generate_solvers(equations, variables=var))
>>>
>>> # define a kernel-transformed regressor
>>> ta = pre.FunctionTransformer(func=vectorize(cf, axis=1))
>>> tp = pre.PolynomialFeatures(degree=3)
>>> e = lin.LinearRegression()

>>>
>>> # train and score, then test and score

>>> xtrain_ = tp.fit_transform(ta.fit_transform(xtrain))
>>> e.fit(xtrain_, target).score(xtrain_, target)

1.0

>>> xtest_ = tp.fit_transform(ta.fit_transform(xtest))

>>> e.score(xtest_, test)
0.9999932741261055
>>>

can we perform these calculations efficiently?

« asynchronous parallel ensemble optimization provides orders-
of-magnitude speedup for multi-layer and global optimizations

dude@hilbert>$ python global_search.py
Cachelnfo(hit=17, miss=8, load=0, maxsize=None, size=8)
Cachelnfo(hit=24, miss=1, load=0, maxsize=None, size=9)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=9)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=9)
min: -70.8861291838 (count=1)

pts: 9 (values=8, size=9)

Single Buckshot Powell
search for all minima

10.000

80 9.000

8.000

60 7.000

6.000

40
5.000

4.000
20
3.000

2.000

1.000

20 40 60 80 100

Diff Ev: 9500s (100 points at
95s /point) population of 40

Multi-iteration Buckshot
Powell search for all minima.

a parallel ensemble
of simplex solvers
performs better
than a genetic
algorithm, and in
much less time.

10.000

9.000

8.000

60 7.000

6.000

40
5.000
4.000

20
3.000

2.000
0

1.000

0 20 40 60 80 100

Simplex: 1000s (100 points at 10s /point)

10.000

80 9.000
8.000
60 7.000
6.000
40

5.000
4000
20

3.000

2.000
0

1.000

0 20 40 60 80 100

Buckshot Simplex: 200s for batch
of 100 solvers on 512 cores

“cache” is an abstraction on storage. “load” is local memory
cache, while “hit” is an archive hit. “miss” is a new point.
Results shown are for when configured for direct

connectivity with archival database.

parallel graph execution and statefulness

A@%

PATHOS
a framework for parallel graph

management and execution
in heterogeneous computing

the function to be minimized and the bounds
from mystic.models import rosen as my model
b = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

get monitor and termination condition objects
from mystic.monitors import LoggingMonitor

stepmon = LoggingMonitor(1l, 'log.txt')

from mystic.termination import ChangeOverGeneration
COG = ChangeOverGeneration()

select the parallel launch configuration
from pyina.launchers import TorqueMpi
my map = TorqueMpi('25:ppn=8"').map

instantiate and configure the nested solver

from mystic.solvers import PowellDirectionalSolver
my solver = PowellDirectionalSolver(len(lb))

my solver.SetStrictRanges(1lb, ub)

my solver.SetEvaluationLimits(1000)

instantiate and configure the outer solver
from mystic.solvers import BuckshotSolver
solver = BuckshotSolver(len(lb), 200)
solver.SetRandomInitialPoints(1lb, ub)
solver.SetGenerationMonitor (stepmon)

local memory cache

e available launchers:
— multiprocess, threaded
— MPI parallel
— RPC/IPC (distributed)
— SSH

e available schedulers:

— torque, slurm, Isf

couple the LAMMPS wrapper to an archive for LAMMPS data
@mystic.cache.cached(archive=’Data_DB’, multivalued=True)

def model(x, axis=None):
if axis is None: axis = slice(None)
convert the 1-D input array to a tuple
of arguments for the LAMMPS function
return LAMMPS(*convert(x)) [axis]

central archive

— 35 interaction
solver.SetNestedSolver (my_ solver)
solver.SetSolverMap(my map) —
- N

solver.Solve(my model, COG)
obtain the solution
solution = solver.bestSolution

database

automated state
saving and sharing

cache-to-archive

caching to memory,
hdf, file, directory,

asynchronous execution enables active learning

>>> imporf mystib>as‘my
>>> import mystic.models as mm
>>> solver = my.solvers.DifferentialEvolutionSolver(4,40)

>>* solver.Terminated(info=True)
"VTRChangeOverGeneration with {'gtol': 1e-06, 'target': 0.0, 'generations': 30, 'ftol': 0.005}"

>>> solver.SetObjective(mm.rosen) >>> solver.bestEnergy

>>> solver.SetInitialPoints([10,9,8,71) 53.788374768170485))
>>f solver.Step() >>> stop = my.term}nat}on.VTRChangeOverGeneratlon(generatlons=60)
>>>"solver.Step() >>> solver.SetTermination(stop))

>>> solver.bestEnergy >>> solver.SetInitialPoints(solver.population[@])
92529.70241985259 >>> solver.Step()

>>> solver.Step() >>> solver.Step()

>>> solver.Step() >>> solver.bestEnergy

>>> solver.bestEnergy 3.6000884492638634

650.8598624082304 >>> solver.bestSolution

>>> solver.bestSolution array([1.28412131, 1.65897873, 2.75352996, 7.58261074]1)

array([0.16878542, -0.86436478, 2.81666842, 9.09712308]) >>> solver.Step()

>>> constraint = my.constraints.integers()(lambda x:x) >>> solver.Step()
>>> [solver.SetConstraints(constraint) >>> solver.Step()

>>> solver.Step() >>> solver.Step()

>>> solver.Step() >>> solver.bestEnergy

>>> solver.bestEnergy 1.2847519993127898

509.0 >>> solver.bestSolution

>>> solver.bestSolution array([1.17162622, 1.38946827, 1.96748706, 3.86501662])

array([@0., -1., 3., 9.1) >>> solver.Solve()

>>> solver.Step() >>> solver.bestSolution

>>> solver.Step() array([1.00117567, 1.00352551, 1.00672722, 1.01106216])

>>> solver.Step() >>> solver.Terminated(info=True)

>>> solver.bestEnergy "VTRChangeOverGeneration with {'gtol': 1e-06, 'target': 0.0, 'generations': 60, 'ftol': ©.005}"
205.0 >>> stop = my.termination.VTRChangeOverGeneration(generations=120, ftol=1le-6)

>>> solver.Step()
>>> solver.Step()
>>> solver.bestEnergy

>>> solver.SetTermination(stop)

>>> solver.Solve()

>>> solver.bestEnergy

205.0 8.928616714985148e-07

>>> solver.Step() >>> solver.bestSolution

>>> solver.Step() array([0.99993566, 0.99989024, ©.99983865, ©.9996083 1)

>>> solver.bestEnergy >>> stop = my.termination.VTRChangeOverGeneration(generations=200, ftol=1e-8)
205.0 . >>> solver.SetTermination(stop)

>>> solver.SetConstraints(None) >>> solver.SetConstraints(constraint)

>>> solver.Step() >>> solver.Step()

>>> solver.Step() "VTRChangeOverGeneration with {'gtol': 1e-06, 'target': 0.0, 'generations': 200, 'ftol': le-08}"

>>> solver.bestEnergy
53.78841867669052 ;>; solver.bestEnergy

>>> solver.bestSolution

arr 7260416, 3 9 n >>> solver.bestSolution
g O 1 . 1 .
>>> |solver.Solve @rray([l., 1., 1., 1.1

example: accurate nonlinear interpolation / ML

from mystic.search import Searcher
from mystic.termination import VTR, ChangeOverGeneration as COG
from klepto.archives import dir_archive

from pathos.pools import ProcessPool as Pool
cost function N§N 2
from mystic.models import griewangk as model
ndim = 2 # model dimensionality

bounds = ndim *x [(-9.5,9.5)] # griewangk

the solvers

from mystic.solvers import SparsitySolver

from mystic.solvers import PowellDirectionalSolver
sprayer = SparsitySolver

seeker = PowellDirectionalSolver

npts = 25 # number of solvers

interpolated surfaces due
to search for extrema
and/or critical points

stop = COG(1le-4)
_map = Pool().map
retry 1 # max consectutive iteration retries without a cache 'miss'

tol = 8 # rounding precision
mem = 1 # cache rounding precision

stepmon = None
archive = None

searcher = Searcher(npts, retry, tol, mem, _map, archive, sprayer, seeker)
searcher.Reset(archive, inv=False)

searcher.Search(model, bounds, stop=stop, monitor=stepmon)
searcher._summarize()

#H#### extract results #####
Xyz = searcher.Samples()

Interpolation or ML on
points generated from a
global search (for all
extrema and/or critical
points) can yield much
more accurate nonlinear
surrogate models than
pure sampling methods.

example: neutron diffraction data analysis

« data analysis typically requires an expert to provide a good

Initial guess that is already very close to ground truth

— historically, high-dimensional nonlinear optimizations are attempted with
fast local optimizers (in Rietveld refinement)

— it can take an expert analyst days to months to produce a good

refinement, especially for parameters with large nonlinear sensitivity

U-Mo study with

a naive parallel

U'alpha Stal'tlng at ensemb/e
(2.836, 5.867, 4.936) search to match g::'|
lattice |
U-Mo study with months parameters and
U-alpha starting at weight fraction
(2.891, 5.841, 5.015) produced the
' » P same results in
hours (Biwer et
A1.94%, A-0.44%, A1.609
(A1.94%, A-0.44%, A1.60%) ol 2019).
o
)
- Los Alamos UNCLASSIFIED
O:—;"med';; L.:s Alamos National Secunty, LLC for the U.S. Department of Energy's NNSA M s 'f\ i

example: robust prediction of materials properties

Inputs to I

experiment
(e.g. temperature) I

New suggested inputs
(e.q. temperature)

ANN
hyperparameters

Inputs
(e.q. temperature)

Perform
Experiment
(e.g. SMARTS)

Experiment
Data

Bounds on refinement
parameters
(e.g. lattice
parameters)

Refinement Plan

| | e

Database that maps inputs
to quantities of interest
(e.g. temperature to texture)

—

Ensemble of ANN

Train ANN to produce
surrogate for inputs
(e.g. temperature) to
return the predicted

quantity of interest
(e.g. texture)

Suggest new inputs

(e.g. temperature) where

surrogate is
uncertain/interesting

Solve for ANN
hyperparameters that

minimize error bounds
of surrogate for quantity

L 4

Ensemble of
directed samplers
(e.g. Spotlight)

Quantity of interest
(e.g. texture)

D Automated analysis

Database

[me
D Active leaming

in-situ loading/heating measurement (SMARTS)
Spotlight automates Rietveld refinement (GSAS)

3.440

w
&
B

1
7
’
,
¢
!
7
*
b
L

|
3.428 4
I

3.422 4

y-U Lattice Parameter

w
~
pirt
o
I
[]

3.410 T T T T
0 10,) 15 20 25
Annealing Time (hours)

The evolution of the y-U lattice parameter during annealing of uranium
10%-wt. molybdenum at 490C. The predicted lattice parameter from
Spotlight (blue dots) and a scripted refinement using its results
(vellow) are overlaid on the results from an expert (dashed black) for
comparison.

Training AN N Training

Inputs / Parameters Outputs / Prediction

.

Temperature

i DiSIWalion
density
: Mechanical
in Layer properties

An ensemble of active samplers is used to discover the
. critical points of two lattice parameters for PbSO4. Results

i are shown for a single pass of N samplers, where each

sampler is driven by a gradient descent optimizer. As N is
increased (left to right), the accuracy of a surrogate trained
on the sampled data increases. We use sampling to find
the critical points on the R-factor (e.g. chi-squared)
surface, where the global minimum is the best fit Rietveld
parameters.

Best fit Rietveld
parameters
(minimum)

N=8 N=16

MILK automates Texture Analysis (MAUD)
mystic automates active learning with UQ+ML
uses expected misfit as the quality metric

X2 . xz
M - B
A A
More Accurate Surrogate

modular workflow for statistics under uncertainty

UQModel

distance()
sample()

BaseUQ
axes
constraint
cvalid Bound: S
kwds : dict X Lo
Ib Lower ¢ property ErrorModel InterpModel :::;St‘: n : NoneType LearnedModel NoisyModel SuccessModel ‘WrapModel
‘“‘i‘?e' upper : property X nx model : property nx nx nx nx
npn: 1 wlb : NoneType ny ny noise ny ny ny ny
zi ples wub : NoneType md md X md rnd : bool md md
xvalid iﬂ% fit() z fit()
Plot()
xpected() Test()
lower_bound() Trelii 0
objective()
solve
pper_bound()
MeasureBounds
lower : property
ExpectedValue MaximumValue MinimumValue ProbOfFailure ValueAtRisk n
upper : property
wlb
. T - - - wub
objective() objective() objective() objective() objective() Ib ap(
redic
X core() Interpolate()
test() Plot()
train()

« unified interface for statistical quantities

— expected value and bounds thereof

— plug in the UQ approach (OUQ, Bayesian inverse, GP, ...)
 unified interface to models “used in UQ calculations”

— built-in methods for sampling, connectivity to data archive

— interpolators & ML estimators for automated surrogate construction

quickly assemble very complex workflows

- simple high-level interface for] N L
Interacting components Coomo
onstraints | X, P(x) Bounds | x
\ 4

— “UQ models”
— statistical quantities ExpectedValue

ErrorModel

— bounds
— constraints < ExpestdValucuppe_bound x>
— penalties

ein Condition | x WrapModel
— conditions (bool) /
@ SuccessModel

 rapid exploration of complex ProbOFailure
statistical workflows
— very few lines of code

— customizable down to
extremely low-level

ProbOfFailure.expected | x

ave P [upper E lerrorl < tolerance |

UQ-driven learning of optimal statistical estimator

Bounds | x @

def moment_constraints(c):

'impose moment constraints on product measure' T contp) \\
target = T_ave, T_var
error = T_ave_err, T_var_err Metric | x Constraints | x WrapModel
E = float(c[@].mean) sample | x
if E > (target[@] + error[@]) or E < (target[@] - error[0]): ‘/////////
c[@]l.mean = target[0]
E = float(c[e] .var) Estimator Data
if E > (target[1] + error[1]) or E < (target[1] - error[1]): r////////
cl@l.var = target[1] {)
return c LearnedModel)
5 Metric | x
improve_score | x
_____T____
v —
#print("building truth F'(x|a')...") l Constraints | x, | ErrorMaodel Bounds | x cost|p ‘ Constraints | p Bounds | p
true = dict(mu=.01, sigma=0., zmu=-.01, zsigma=0.) U
truth = ToyModel('truth', nx=5, ny=3, xxtrue) N f ‘//// \\\\‘> ‘(///
#print('sampling truth...') ExpectedValue Solver
data = truth.sample([(0,1)]1+[(0,10) %4, pts=-16) W{ minimize | p
W sup E | error |

def cost(x, axis=None):
CASE 1: F(x|a) = F'(x|a'). Tune A for optimal G.
kwds = dict(smooth=x[0], noise=x[1], method='thin_plate', extrap=False)

#print('building estimator G(x) from truth data...')

surrogate = InterpModel('surrogate', nx=5, ny=3, data=truth, sxkwds)
#print('building UQ model of model error...')

error = ErrorModel('error', model=truth, surrogate=surrogate)

rnd = 25 if error.rnd else None

#print('building UQ objective of expected model error...')

b = ExpectedValueOUQ(error, bnd, pmcons=moment_constraints, \
iscons=is_constrained, samples=rnd)

i = counter.count()

#print('solving for upper bound on expected model error...')

solver = b.upper_bound(axis=axis, id=i, %param)

active learning of expected instrument response

Inputs to
experiment
(e.g. temperature)

New suggested inputs
(e.qg. temperature)

Inputs
(e.g. temperature)

E:::;m Experiment Robust hardware with
et Data new capabilities
Analysis d
hyperparameters > [2 ’_’A
(e.g. materials ‘(Q >
parameters) - >
1 g. >
- | > Y
Y 0 7
) s
o . Calculation of

= Database that maps inputs ¢

to quantities of interest

quantity of interest

| 0.0

Quantity of interest
(e.g. texture)

y

truth = dict(nx=5, ny=3, mu=.001, zmu=-.001)
dolden = ToyModel('golden', cached=True, sigma=8, zsigma=0, x*truth)

Leamer
hyperparameters

—=

LS

Train Leamer to produce
surrogate for inputs
to retumn the predicted
quantity of interest

estimate = dict(nx=5, ny=3, data=golden)
mlarg = dict(alpha=0.0001, batch_size='auto', beta_1=0.9, \
beta_2=0.999, epsilon=1e-08, \

v

hidden_layer_sizes=(100,75,50,25), \
learning_rate_init=0.001, max_fun=15000)
import sklearn.neural_network as nn

Suggest new inputs
(e.g. temperature) where
surrogate is potentially
most informative

Solve for
hyperparameters that
minimize error bounds
of surrogate for quantity
of interest

estimator = nn.MLPRegressor (**mlarg)

learned = LearnedModel('learned', estimator=estimator, *xestimate)
print('estimate: %s' % str(learned([1,2,3,4,5])))

mlerror dict(model=golden, surrogate=learned)

error ErrorModel('error', *xmlerror)

print('error: %s' % str(error([1,2,3,4,5]1)))

UQ-driven active learning and dynamic sampling

* ensemble sampling:

uses an ensemble of local optimizers to
discover critical points of the unknown
surface

can customize the local solver
npts is the size of the ensemble
sample (asynchronous)
sample_until (blocking)

— evals, iters, terminated

import mystic.samplers as sam

import mystic.solvers as sol

s = sam.LatticeSampler(bounds, model, npts=4,
solver=sol.PowellDirectionalSolver)

s.sample_until (terminated=all)

J

create handles to surrogate archives

(one surrogate for each one of N outputs)

import mystic.cache.function as func

surr = lambda i: func.db(’surrogate{il}.db’.format(i=i))
archives = list(map(surr, range(N)))

read the surrogates from the archives
and combine to a single surrogate
surrogate = func.read(archives)

0.00200

0.00175 +

0.00150 +

0.00125 +

0.00100 +

0.00075 +

0.00050 1

0.00025 +

0.00000

0 5000 10000 15000 20000 25000 30000

test score (on newly encountered data) converges over time

UQ-driven active learning and dynamic sampling

New samplers are spawned each
o iteration, until the test score <= 2e-7 for
At a cursory level, both traditional L : .
three consecutive iterations. (Better:

sampling from a distribution and . o) .
S . . stop if no new critical points found in N
optimizer-driven sampling seem to iterations)

© reproduce the Rastrigin function.
1.75 —
N Surrogate is (re)trained with a small noise
1.50 However, note that upon zooming in the NS . -
1.25 - . injection until score <= 1e-7.
Rastrigin function has numerous local
N 1.00 minima and maxima.
0.75
0.50
\ 0.25
0.00
. % 1000
200
400
600
800 0
1000

0.00200

0.00175 +

0.00150 +

0.00125 +

0.00100 +

0.00075 +

0.00050 1

0.00025 +

0.00000

0 5000 10000 15000 20000 25000 30000

sampling from a distribution > test score (on newly encountered data) converges over time

example: surrogate of one-component plasma

« We used the framework to build database
and surrogate functions for OCP.

« LAMMPS is used as objective function.

+ Takes 2 inputs (r, Gamma) returns g(r), self-
diffusion, and viscosity

radial
distribution
function

 Execution

1. Set the bounds of parameters space:
r =[0, 5] and Gamma=[0,50]

2. Choose sampler - Lattice sampler]fcre?ning
unction
3. Choose optimizers - Nelder Mead.
NCOG=10+

4. Use thin plate RBF to interpolate data

5. Tolerance for valid surrogate:
max_distance=10-°
sum_distance=10-3

P
)

We found valid surrogates of the
radial distribution function,
screening function, diffusion, and diffusion
viscosity after 3822 function

evaluations (MD). viscosity

SiA p22N
S
o

o
o

Ayso
o
>

0.2

Active Learning for Robust Particle Accelerator Beams

Obijective

Develop adaptive feedback control tool for automated tuning

of particle accelerator beams to minimize beam loss,

maximize current, and provide an optimally safe beam in a

dynamically changing environment[1].

Approach

Fully automate accelerator beam steering, with
equipment settings as input and output indicating
the quality of beam.

Train a physics-informed model that minimizes
expected worst-case bounds on the quality metric
between the accelerator model and data acquired
from non-invasive diagnostics.

Update the learned model as newly acquired data
breaks the model quality threshold.

Trained neural network

Target
phase space

Initial rough guess of
machine parameter

NN input settings

%%‘b Particle Accelerator

gt ot W e— “I*Hh—-: (B

g iOﬂ TCAV
0511 Diagnostic
p gnos beam-
based
feedback

Continuously
updated

Model-independent
feedback
parameter

Cost based on compared distributions settings

Detected phase space

Impact

Preliminary work[2] demonstrates longitudinal phase-
space control of e- beams at the LCLS.

Dramatically increase rate of scientific discovery from
accelerator systems, while minimizing the risk of
failure and/or damage to the system.

[1] A. Scheinker 20210160DR; [2] A. Scheinker PRL, 121.4 (2018)

Active Learning for Realizing Robust Quantum Hardware

Feedback

?

L] L] (

Objective
Automate learning of Duationofexchstep o,
quantum technology with Laser coolingdetuning o,
enhanced performance and Laser coolingitensty o
robustness against Repump intensity o
environmental Magnetic ield >
ﬂ UCtuationS[1] Evaporation ramp o
>

?

Approach

Fully automate the quantum sensing experiment,
with experiment settings as input and output
indicating the quality of results.

Train a physics-informed model that minimizes
expected worst-case bounds on the quality metric
between the model and experiment.

Update the learned model as newly acquired data
breaks the model quality threshold.

e

)

Cost)
function

%

Data I

Impact

Preliminary work[2] indicates large performance
gains for cold-atom experiments.

Expect rapid automated discovery of new
capabilities to produce better manipulation of the
quantum state, faster duty cycle, sensor initialization
capabilities, etc.

[1] M. Martin 20210116DR; [2] A.D. Tranter Nature Com, 9 (2018)

...current work and outlook ' &

* new optimization and learning algorithms and workflows

* new interpolation strategies and constraints/transforms

* new sampling algorithms and auto-differentiation strategies

* new auto-dimensional reductions and kernel-based sensitivities
» high-level active learning workflow improvements

* mystic is available at:
— https://github.com/ugfoundation

« documentation and tutorials:
— http://mystic.readthedocs.io
— https://github.com/mmckerns/tutmom
— https://github.com/mmckerns/tlkmys

* questions?
— contact me at: mmckerns@ugfoundation.org

End Presentation

